Complex signal recovery from multiple fractional Fourier-transform intensities
نویسندگان
چکیده
منابع مشابه
Complex signal recovery from multiple fractional Fourier-transform intensities.
The problem of recovering a complex signal from the magnitudes of any number of its fractional Fourier transforms at any set of fractional orders is addressed. This problem corresponds to the problem of phase retrieval from the transverse intensity profiles of an optical field at arbitrary locations in an optical system involving arbitrary concatenations of lenses and sections of free space. Th...
متن کاملSignal Recovery from Partial Fractional Fourier Domain Information
The problem of recovering signals from partial fractional Fourier transform information arises in wave propagation problems where the measured information is partial, spread over several observation planes, or not of sufficient spatial resolution or accuracy. This problem can be solved with the method of projections onto convex sets, with the convergence of the iterative algorithm being assured...
متن کاملFractional Fourier Transform
Abstract The integral transform method based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the generalized Weyl space-fractional operator. The solutions, representing ...
متن کاملInvolving Fractional Fourier Transform
In this paper, some properties of pseudo-differential operators, SG-elliptic partial differential equations with polynomial coefficients and localization operators on space S ν (R), are studied by using fractional Fourier transform. AMS Mathematics Subject Classification (2010): 35S05, 46F12, 47G30.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Optics
سال: 2005
ISSN: 0003-6935,1539-4522
DOI: 10.1364/ao.44.004902